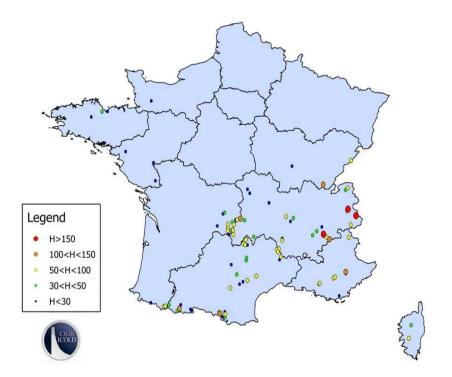


Recommandations barrages-voûtes

Marc Hoonakker et Guirec Prevot

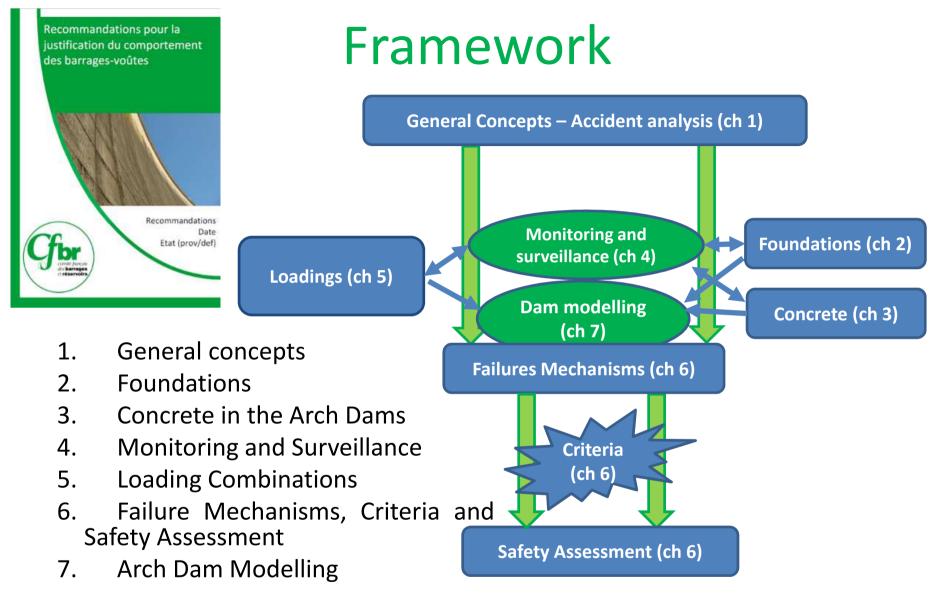
Recommandations provisoires pour la justification du comportement des barrages-voûtes



Symposium AG du CFBR 31 Janvier 2019 – Marseille

A CFBR (French-COLD) Working Group

- French inventory: 88 arch dams (VA)
- Goal:
 - a state-of-the art for a safety review of arch dam
 - evaluating dam performance from the safety perspective
- Way of thinking: dam accidents and incidents and observed behaviour in order to characterise their specific failure mechanisms.



A CFBR (French-COLD) Working Group: during 4 years

ANDRIAN Frédéric	ARTELIA
BOURDAROT Eric	EDF/CIH
CARVAJAL Claudio	Irstea
CARRERE Alain	Consultant -TRACTEBEL/COB
CASTANIER Gilbert	EDF/TEGG
COUTURIER Bernard	СТРВОН
EMERIAULT Fabrice	ENSE3 – 3SR
FABRE Jean-Paul	EDF/DTG
FOURNIE Yann	SHEM
HOONAKKER Marc	MTES/BETCGB (chairman)
JELLOULI Moez	ISL
KOLMAYER Philippe	EDF/CIH
MOLIN Xavier	TRACTEBEL/COB
NORET Christine	TRACTEBEL/COB
OUSSET Isabelle	Irstea
PREVOT Guirec	MTES/BETCGB (secretary)
ROBBE Emmanuel	EDF/CIH
TARDIEU Bernard	Consultant
YZIQUEL Alain	ARTELIA

+ Technical Appendices including an Appendix on Foreign Practices

General concepts

• Design and construction evolution (Appendix 1) of arch dams with accident review (Appendix 6)

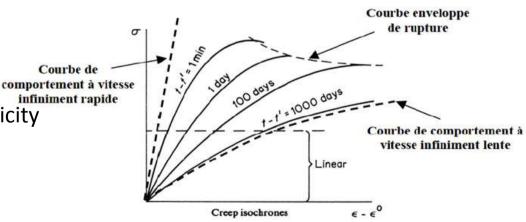
Only 2 arch dam breaking : Malpasset (France) et Meihua (China)

- Mechanical aspects and induced behaviors
- Different "limit" states : notion of "adaptation process" (hyperstaticity) :
 - the adaptation states reflecting normal behaviour of the structure that are considered acceptable under usual load combinations
 - the adaptation states that may lead to the gradual emergence of local disorders, without calling into question the overall behaviour of the dam.
 - beyond, the appearance of disorders that can lead to rupture

The evaluation of the acceptability limits of these adaptations are the main problem of evaluation of the safety of the structures

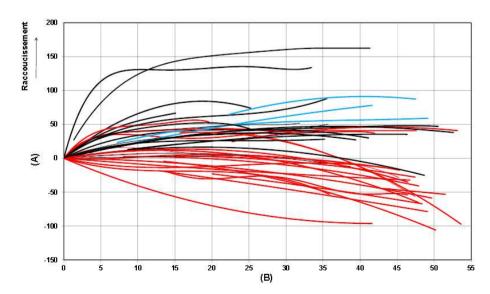
Geology / Geomechanics

- Importance of the geological and hydrogeological model
- Highlight an output kinematics
- Differentiate scales in the structure of the rock


The geological study must be done by a geologist competent in the field of dams

- Different types of modules (1st load, reversible, dynamic, irreversible) : their determination depends on the evaluation method
- Needed dialogue between the geomechanical engineer and the civil engineer to determine the choice between peak or residual resistance
- No guided values of shear parameters, rather how to get them

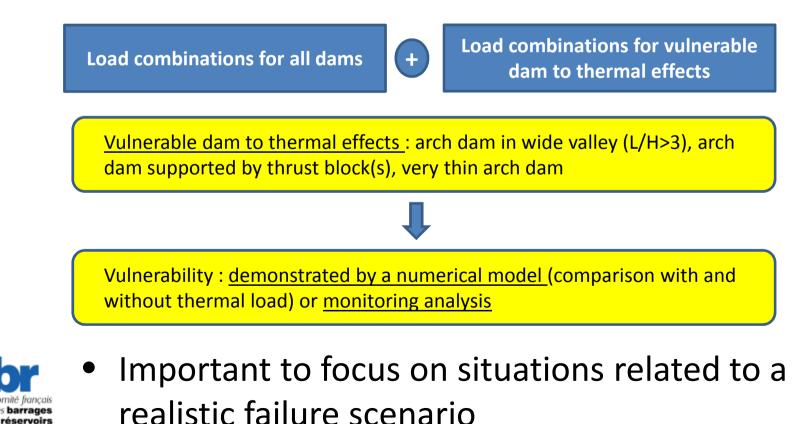
Concrete in the arch dams


- More details than in the recommendations of gravity dams :
 - Characterization of the material
 - Tests / recognitions
 - Behaviour of concrete, irreversible processes (swelling, shrinkage, creep)
 - Mechanical properties
 - zoom on thermal properties com
 - zoom on the modulus of elasticity
 - Evaluation method
 - Es calibrated on monitoring
 - dynamic properties
 - From Ministery guidelines
 - guided values in the text and in appedices

Monitoring and Surveillance

- Particularities of the behavior of the arch dam
 - Specific monitoring and surveillance
- Behaviour
 - Irreversible behaviour
 - shrinkage, swelling, creep, displacements of supports, change of thermal or operating conditions, stresses never known, etc.

Deformations of the crest arc as a function of time and type of the arch dam *(EDF 2003)*


Monitoring and Surveillance

- Supervision and monitoring advice according to the mechanisms identified :
 - Unfavorable factors
 - Characteristic process
 - Surveillance and auscultation possible
- Mechanisms identified (in connection with Chapter 6) :
 - Rock wedge instability
 - Sensitivity to cracking, sliding along the supports
 - Opening upstream toe
 - Swelling of concrete
- Statistical analysis of auscultation data :
 - Standard and more specific analysis methods (see Appendix 4)
 - Historical reenactment

Loadings

- Distinctive characteristic of arch dams: thermal loads
- But two types of arch dams: vulnerable or not to thermals effects

Loadings

For all arch dams – Situations to be checked

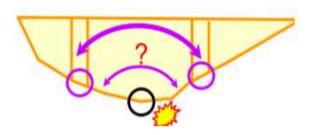
	Combination name	Hydrostatic load	Thermal Load		
	Normal operating situations				
	Normal operating situation	Mean water level	None		
	Seasonal operating situation	Water level during the season Water level during the season	« Winter » « Summer »		
	Rare Situations				
	Rare Flood Situation	Rare Flood	None		
	Rare Seismic Situation (for gated dams)	OBE	None		
	Extreme Situations				
C	Extreme Flood Situation	Extreme Flood	None		
	Extreme Seismic Situation	SEE	None		
	barrages éservoirs				

Loadings

Vulnerable dam to thermal effects – New situations to be checked

	Combination name	Hydrostatic load	Thermal Load
	Ten-year Seasonal Operating Situation	Water level during the season Water level during the season	« Ten-year Winter » «Ten-year Summer »
	Rare Situations		
	Rare Seasonal Situation	Mean water level Mean water level	« Winter » « Summer »
	Rare Flood Situation with Seasonal Thermal Loading	Rare flood <u>without</u> marked seasonality of flood distribution	« Winter » and « Summer »
		Rare flood <u>with marked</u> seasonality :	
		Seasonal Flood during the concerned period	Thermal Loading (« Winter » or « Summer ») the most damaging
		Maximum Seasonal Flood	Thermal loading during the concerned period
	Extreme Situations		
	Extreme situation with a combination of a flood and a thermal load	Flood to be defined	Thermal load to be defined
omi les t	Extreme situation with a combination of a seismic load and a thermal load	Seismic load to be defined	Thermal load to be defined

12


Failure mechanisms

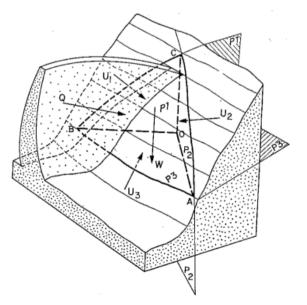
Rock wedge instability

Sliding along the dam/foundation interface

Shear overloading at the base of cantilevers

Bedrock erosion by overflow

Erosion internal erosion for specific geological conditions


Failure mechanism: Rock Wedge Stability

- Accidents : <u>Malpasset</u>, but also Frayle, Idbar, El Atazar, Montsalvens
- Identify the likely kinematics
- <u>Londe's method</u>, or other more recent methods (discrete element modeling)
- Perform sensitivity analyzes, rather than introducing safety factors on :
 - » uplift pressures

les barrages i réservoirs


- » angles of friction
- Retro-analyzes (historical loadings)
- If low safety margins → drainage in the rock foundation block.

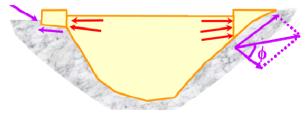
Failure mechanism: Sliding along the dam/foundation interface

- Analysis based on:
 - Normal and tangential forces/stresses in the concrete/foundation interface area
 - Shear stress in the concrete/foundation interface area
- Gradual Approach

Approaches

Linear Elastic Approach

- Accepted if a reasonable area of the concrete/foundation area remains in the elastic domain
- Accepted for arch dam in narrow valley (L/H < 2,5)


Non-Linear Approach

- Make sure that transfer of thrust on adjacent cantilevers with a new equilibrium state
- Millimetric-irreversibledisplacement accepted in normal or rare situation
- Centimetric-irreversibledisplacement accepted in extreme situation
- decreasing the shear strength (C and Φ) to search margins of safety,
- [1.5] / [1.2] / [1] for normal/rare/extreme situations

Case of Thurst Block

- Same steps
- But, if the Thrust Block have a significant role on the arch dam stability
- To be ckecked as a gravity dam

Failure mechanism: Shear overloading at the base of cantilevers

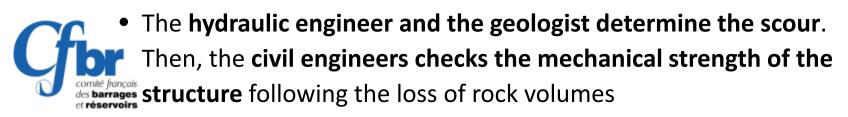
- No accident, but incidents (possibility of accident ?)
- Similar approach
- Aspects to be checked:
 - Location of the contact opening and the propagation of uplift;
 - Increasing of hydraulic gradients
 - Possible sliding of a rock wedge located immediately downstream;
 - Magnitude of calculated displacements
 - Consequences of stress distribution/reorganisation on other failure kinetics

Failure mechanism: Excessive stress in concrete

- Accidents : No dam breaking due to an excess of compressive stresses, but...
- The development of cracking (traction) is not directly a mechanism of breaking
- The uncracked area will undergo a greater compression and efforts transmitted are accentuated
- Compression criteria to be checked :

Situation	Linear analysis	Non-linear analysis
Normal	Rc/[3]	Rc/[2]
Rare	Rc/[2]	Rc/[1,5]
Extreme	Rc/[1,1]	Rc/[1,05]

 Make sure that no significant shear stress area in concrete (Mohr-Coulomb criterion).



Failure mechanism: Scour by overtopping

- Accidents :
 - Generally insensitive to overflow (cf. Vajont)

- Dam abutment breaking due to overflow : Sweetwater and Moyie River (USA)
- Erosion evaluation methods still remain in the field of research. Annex 6 briefly discusses the available methods
- Three erosion phenomena identified :
 - Bank erosion in the vicinity of the part of the dam against the bank (bypass)
 - Erosion of the rock on the banks, by scour of rock fragment under the effect of dynamic pressures
 - Erosion of the rock at the bottom of the valley (impact of the waterfall)

Failure mechanism: Internal erosion in foundation

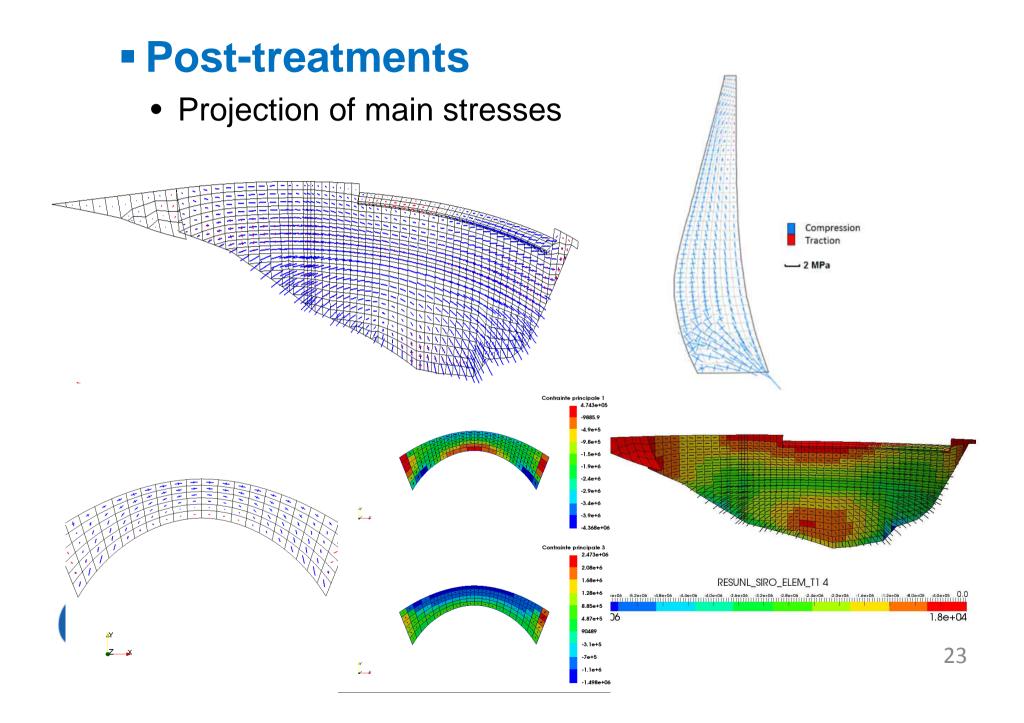
- REX : abutment breaking of Lake Lanier dam (USA)
- Structures not very sensitive, due to the good quality of the rock in foundation of, but particular geological conditions are possible :
 - regressive erosion (faults with mylonite, arenic zones ...)
 - sandy and / or clay fills
- Impossible to define a limit gradient beyond which erosion begins
- \rightarrow Risk assessment by a geologist

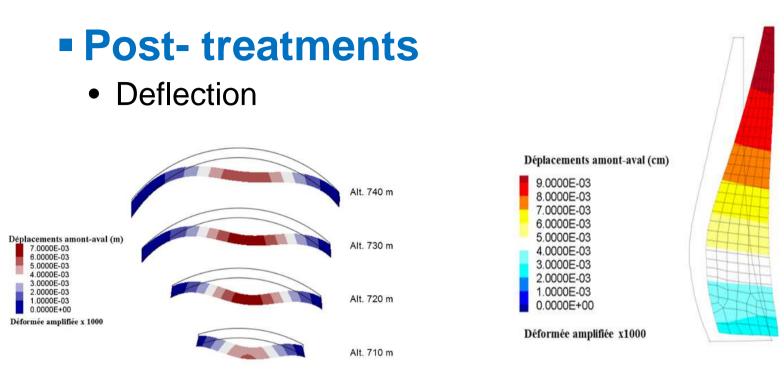
Dam Modelling

- Modelling approach
- Modelling advice on usual loads
 - Geometric model and mesh
 - Field of initial stress under self-weight
 - Hydrostatic pressure and hydro-mechanical coupling
 - Thermal Load

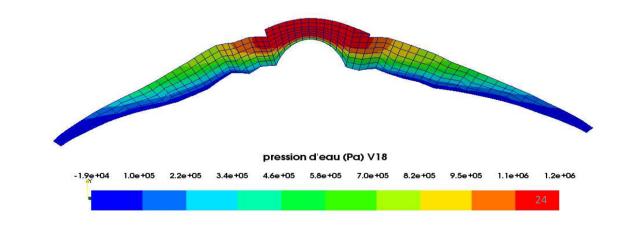
Choice and adjustment of model parameters

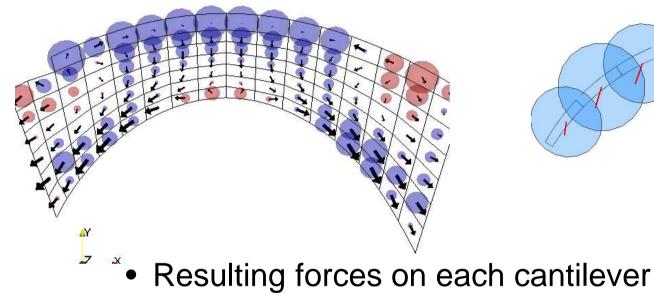
• Especially by monitoring

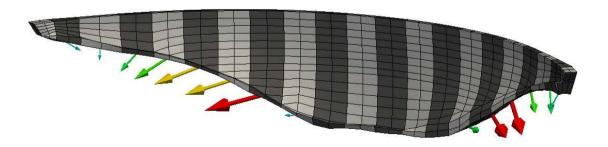

Dam Modelling


Constitutive Equations

- Modelling and analysis of the dam body (including non-linear approach)
 - Discrete element approach
 - Damage elements
- Modelling and analysis of the foundation
 - Isotropic / anisotropic
 - Discontinuous approaches (Londe's Method, discrete elements)
- Modelling and analysis of the dam / foundation interface
 - Linear approach
 - Non-linear appraoch
 - > Mechanical constitutive equations (Mohr-Coulomb...)
 - \succ decreasing the shear strength (C and Φ) to search margins of safety
 - Hydro-mechanical coupling


Phenomena causing irreversible behavior


• Uplift at the concrete/rock interface



Post- treatments

• Normal and tangent stresses

GlyphVector Magnitude 1.00e+07 2.00e+07 3.00e+07 4.00e+07 5.00e+07 6.00e+07 7.00e+07 8.00e+07 9.00e+07 1.00e+08

Appendices

- Appendix 1: Evolution of justification methods for arch dams
- Appendix 2 : Foundations
 - Characterization of Rock Foundations- Empirical Approaches (H & B, Barton)
 - Precisions on the rupture criterion (description of the shear of a discontinuity, dilatancy)
- Appendix 3 : Mechanical characteristics of concrete discontinuities (guided values)
- Appendix 4 : Monitoring and surveillance
 - The main types of cracking
 - Principles of statistical analysis methods of measured quantities
 - Measured displacements to internal deformations
 - Feedback on the pressure fields observed in foundation at the central part of the arch dams
 - Use of monitoring for calibration of models

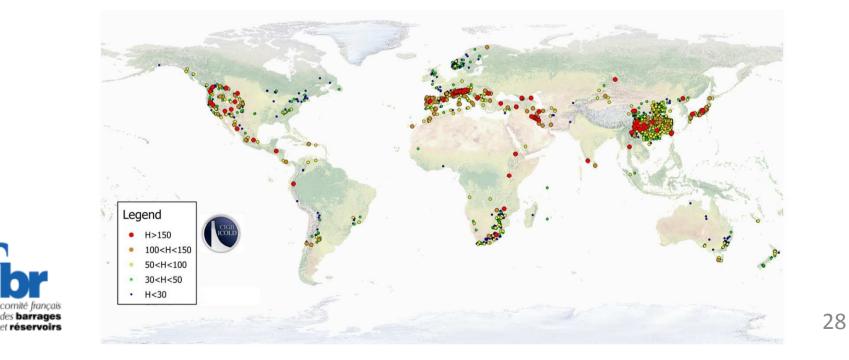
Appendices

Appendix 5 : Accident Analysis

- Main events in the world
- Extracts from the article by E. Bourdarot at the CFBR 2016 conference

Appendix 6 : Overflow rock erosion

• Main methods


• Appendix 7 : Foreign regulations and practices

- USA, Australia, Switzerland
- Comparative tables (loads, criteria)
- Appendix 8 : R&D axis

Conclusion

- It was a very short overview of the report
- Article in French for the 2018 ICOLD congress in Vienna but available in English: <u>http://barrages-cfbr.eu/IMG/pdf/gtvoute_vienne2018.pdf</u>
- Report available in French on the CFBR website: <u>http://barrages-cfbr.eu</u>
- Report planned to be translated in English

Thanks...

