

Climate Change: Challenges and Opportunities for Hydropower

Overview of IHA initiatives on Climate Change issues

ICOLD Technical Committee Y

COMMISSION INTERNATIONALE DES GRANDS BARRAGES

INTERNATIONAL COMMISSION ON LARGE DAMS

Agenda

- Hydropower 2050 vision
- GHG emissions and the G-Res tool
- IHA Climate Resilience Guide

We need hydropower to meet Net Zero targets:

• To limit temperature rises to <2C world needs at least 850 GW additional by 2050

- Hydro can fill the hole left by coal
- Hydropower's role will increasingly shift to enhancing system flexibility and supporting variable wind and solar PV

Global electricity generation by source 2050, Transforming Energy Scenario (IRENA 2020 – Global Renewables Outlook: Energy Transformation 2050)

Hydropower 2050 report

Hydropower needs to increase capacity by at least 850 GW by 2050 in order to support the energy transition and tackle climate change

- Hydropower today
- Why we need 850+ GW
- What if we don't build new hydro?
- Sustainability
- Potential global hydropower capacity
- The hydropower 'pipeline'
- Policy recommendations

https://www.hydropower.org/publications/hydropower-2050identifying-the-next-850-gw-towards-2050

Achieving net zero Future hydropower development

In most regions the potential far exceeds what is needed

Remaining

potential GW

Pipeline GW

Installed GW

Region	Indicative Potential Hydropower Capacity (GW)	Installed Capacity in 2020 (GW)
Africa	630	38
Europe	350	254
East Asia and Pacific	1,100	501
North and Central America	620	205
South America	500	177
South and Central Asia	600	154

We Can with Hydropower

Diha HYDROP SWER

- Hydropower as a solution to climate change is key message of all IHA communications
- #WithHydropower campaign https://with.hydropower.org/
- IHA ensure high-level presence at global climate events such as COP26, COP27
- Sustained engagement and advocacy towards policymakers, investors and the public

1 iha

GHG emissions from reservoirs

- How do they form?
- How to measure: G-res
 tool

GHG Emissions from reservoirs

GHG Emissions from reservoirs

Measuring Emissions from reservoirs G-res tool

- Simple-to-use, web-based tool that can be used to predict GHG emissions from reservoirs without going to the field to take measurements.
- Launched May 2017
- https://g-res.hydropower.org/

Initiative partners:

Results analysis 500 reservoirs:

Emissions intensity of ~500 reservoirs Source IHA

Results analysis 500 reservoirs:

Hydropower GHG emissions

Results of 2021 study* confirm hydropower is a **low-carbon technology**

Hydropower global median life-cycle emissions: 23 gCO₂-eq/kWh

Aligned with IPCC and the range between 25th and 75th percentile is smaller

* Water Security and Climate Change: Hydropower Reservoir Greenhouse Gas Emissions (2021)

GHG eligibility requirements

Use G-res tool for site specific GHG estimations

Assessing the net greenhouse emissions of a reservoir using such G-res tool is now an expectation for:

- \checkmark demonstrating sector's basic good practice
- ✓ financing a hydropower project through climate finance*
- ✓ sustainability reporting

Thresholds:

- □ a power density of **more than 5 W/m²** or
- □ an emissions intensity of less than 100 gCO₂e/kWh.

Adaptation Resilience Guide

The guide provides a practical and useful approach for **identifying**, **assessing** and **managing** climate risks to enhance the climate change resilience of new and existing hydropower projects.

It provides international industry good practice on how to **incorporate climate resilience** into hydropower project **planning, design and operations**. 2019

A guide for the hydropower sector

Worldwide application

Industry welcomed the guide

Financial institutions are the majority of the organisations to request the guide be applied.

Pilot projects before May 2019

Projects after May 2019

Six Core Principles

- ✓ All stages
- ✓ All types
- ✓ All scale
- ✓ All geographies and weather
- ✓ Key functions
- ✓ All levels of data

www.hydropower.org/climateresilienceguide

Hydropower Sector Climate Resilience Guide

For existing and future hydropower projects

A guide for the hydropower sector

Innovative methodology

Addressing uncertainty

Decision Making under Uncertainty (DMU)

Bottom-up approach

iha

Stress test to find system risks

Monitoring, Evaluation and Reporting plan

Phase 3: Climate stress test

3.1 Comprehensive Approach3.2 Semi-comprehensive approach3.3 Limited approach

Providing guidance

Resilience measures

Annex A. Climate stressors list

For electricity production

- Generation shifts
- Load factor changes
- Min environmental flows variations
- For access road
- Increased debris
- Increase risk of slope instability

For reservoir

- GLOFs
- Sediment load increase

Annex C. Examples of adaptation measures

For electricity production

- Improvement of hydrological forecasting tools
- Reassessment of the type of scheme (base load/peaking and run-of-river/storage)
- Revised optimal minimum operating level

For access road

- Debris screens, drainage and culverts
- Additional slope protection

For reservoir

- Glacial monitoring
- Controlled glacial reservoir breach
- Change of dam type to allow overtopping
- Additional sediment management strategies

structural functiona

www.hydropower.org/climateresilienceguide

Alignment with other frameworks

Used as a reference for international institutions, multilateral banks

hydropower.org

Final Report Recommendations of the Task Force on Climate-related

Financial Disclosures

TCFD TASK FORCE ON CLIMATE-RELATED

June 2017

Conclusion

- Opportunity: We need more hydropower!
- Challenge: Reservoirs result in net GHG emissions; can be evaluated with the G-Res tool
- Challenge: Effects of Climate Change on infrastructure: Resilience Guide

Thank you

- with.hydropower.org/
- g-res.hydropower.org/
- www.hydropower.org/climateresilienceguide