

Thème: Vantellerie de barrages dans les EDD, RS, VTA et ETC

Capitalisation du Retour d'Expérience sur les vannes de barrages

Philippe BRYLA
Mathieu GEVODANT
Marielle MONTERYMARD

Colloque CFBR

Vantellerie, contrôle-commande, télécom et alimentations électriques pour des barrages plus sûrs

2 et 3 décembre 2015 – Chambéry

SOMMAIRE

1. Introduction

Un parc étendu et diversifié De nombreux diagnostics d'état

2. LA BASE DE DONNÉES HYMEDIAG

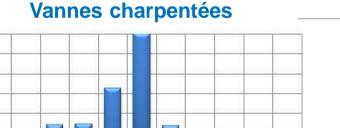
Objectifs et structuration des données Caractérisation des dysfonctionnements Contenu de la base de données

3. PRINCIPAUX DYSFONCTIONNEMENTS RECENSÉS SUR LES VANNES

4. EXEMPLES D'UTILISATION DE LA BASE HYMEDIAG

Estimation de taux de défaillance Raisonnement par analogies

5. CONCLUSION



INTRODUCTION

Un parc étendu et diversifié

- Plus de 6000 vannes de barrage exploitées par EDF
 - **Fonctions diverses**
 - Environnement et modes d'exploitation de chaque matériel
 - Spécificités intrinsèques liées à la période de mise en service
 - ❖ Type de conception
 - ❖ Technologies de fabrication
 - ❖ Matériaux utilisés
 - Évolution du CC

140

120

100 80

> 60 40

> 20

INTRODUCTION

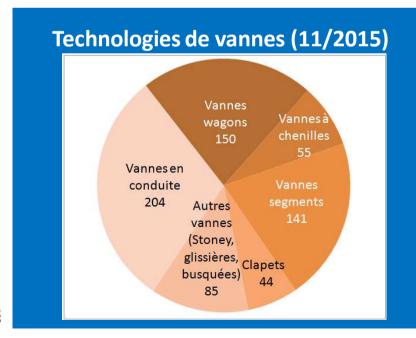
De nombreux Diagnostics d'état

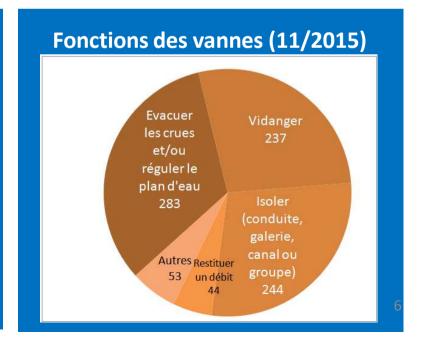
- Différents diagnostics réalisés par l'ingénierie
 - Cotation de chaque vanne du parc : Criticité = f (état ; enjeu)
 - Diagnostics pluriannuels réalisés sur les matériels dont la criticité est la plus élevée
 - Contributions hydromécaniques aux Revues de Sûreté
 - Analyses post-avaries
- Ces diagnostics incluent généralement les phases suivantes
 - Collecte de données disponibles, historique du matériel
 - Inspections, CND
 - Quantification des chargements / calcul (si besoin)
 - Synthèse

LA BASE DE DONNÉES **HYMEDIAG**Objectifs et structuration des données

- L'objectif est de profiter du Retour d'Expérience pour :
 - Analyser des nouveaux dysfonctionnements rencontrés
 - Déterminer les principaux modes de défaillance par familles technologiques
 - ⇒ orienter les actions de renforcement de la sûreté
 - Orienter la maintenance, conception de matériels neufs
 - Hiérarchiser les technologies en fonction de leur robustesse
- Principales données capitalisées
 - Données de conception
 - ❖ Type de vanne
 - Dimensions
 - Éléments de la chaîne cinématique
 - Dysfonctionnements
 - Composants en cause
 - Actions correctives

LA BASE DE DONNÉES HYMEDIAG

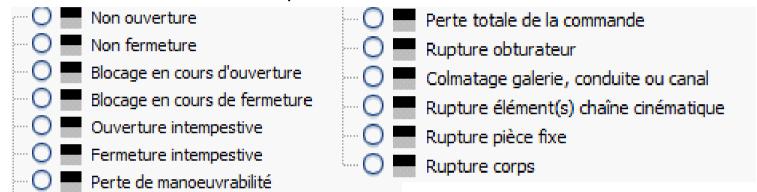

Contenu de la base de données

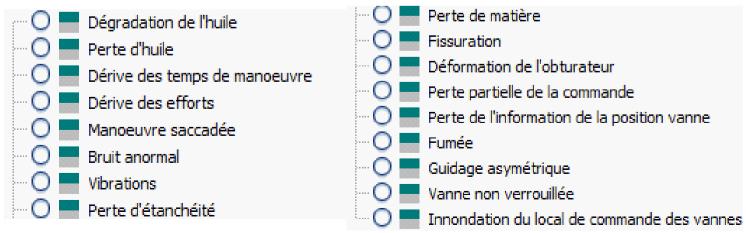

Actuellement:

- ≈ 700 vannes recensés 457 dysfonctionnements (défaillance ou écart)
- ≈ 100 vannes renseignées / an

• Quelques biais :

- Les vannes de barrages sont les plus représentées (Revues de Sûreté)
- Les vannes les moins fiables sont sur-représentées (priorisation des diagnostics sur criticité élevée, analyses post- avaries)




LA BASE DE DONNÉES HYMEDIAG

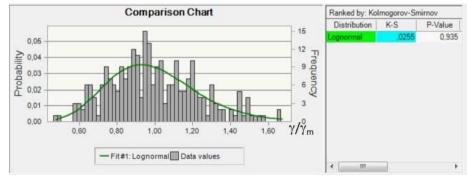
Caractérisation des dysfonctionnements

- On distingue 2 types de dysfonctionnements
 - **Défaillance** de la vanne en exploitation normale ou au cours d'un essai

• **Écart** = non respect d'un critère du référentiel (impossibilité de manœuvre avec la source principale, effort de manœuvre trop élevé, temps de manœuvre non conforme, sous-épaisseur non acceptable...)

PRINCIPAUX DYSFONCTIONNEMENTS RECENSÉS

- On peut regrouper plusieurs dysfonctionnements dans un unique mode de défaillance « perte de manœuvrabilité » :
 - Non ouverture
 - Non fermeture
 - Blocage en cours d'ouverture
 - Blocage en cours de fermeture
- La base permet d'analyser finement le (ou les) composant(s) à l'origine de ce mode de défaillance
- On dégage facilement quelques tendances pour les technologies de vannes les plus représentées, par exemple :
 - Vannes segments: 141 vannes
 - Vannes wagons: 150 vannes

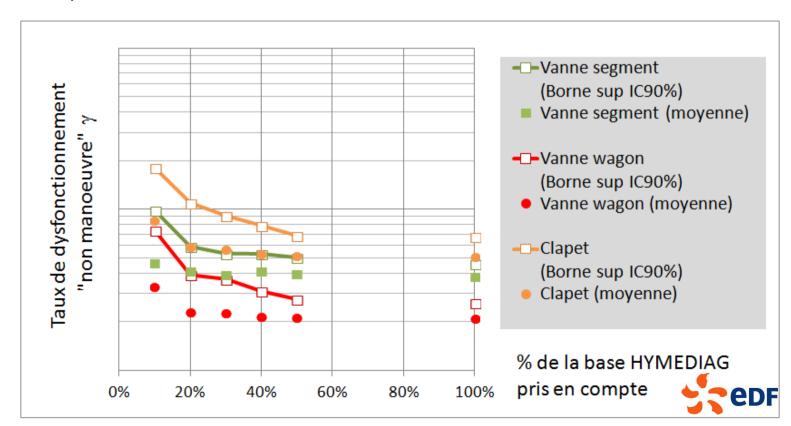


EXEMPLES D'UTILISATIONS DE LA BASE Estimation de taux de défaillance (1/2)

 Estimation d'un taux moyen de dysfonctionnement à la sollicitation γ pour le mode de défaillance global « perte de manœuvrabilité »

$$\gamma_{\rm m} = \frac{\text{Nb. de dysfonctionnements}}{\text{Nb. de manœuvres de vannes}}$$

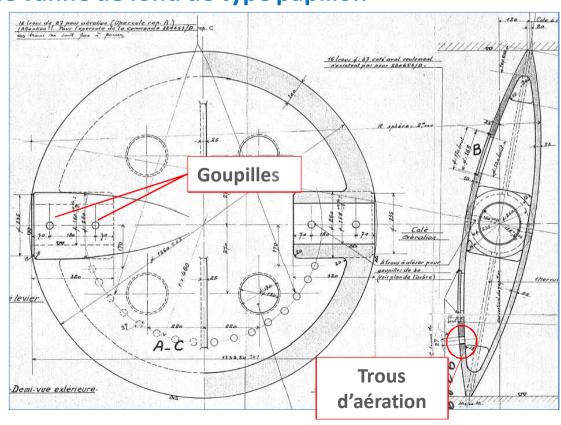
- Étude de la robustesse des estimations
 - Analyse de la variance de l'estimation à partir de sous-échantillonnages aléatoires (10% à 50%) de la base générés par algorithme de Monte-Carlo
 - Incertitude sur le taux de défaillance moyen γ_m modélisable par une loi log-normale : p-value (Kolmogorov-Smirnov) > 90%



EXEMPLES D'UTILISATIONS DE LA BASE

Estimation de taux de défaillance (2/2)

- Estimation d'intervalles de confiance à 90% du taux de défaillance
 à la sollicitation γ pour les technologies de vannes les plus représentées
 - Vannes-segments
 - Vannes wagons
 - Clapets



EXEMPLES D'UTILISATIONS DE LA BASE Raisonnement par analogies (1/2)

- Dans un diagnostic, la base HyMéDiag est utilisée pour :
 - Identifier les défaillances déjà survenues sur des matériels similaires
 - Vérifier si une défaillance envisagée au stade d'une analyse de risques est déjà survenue sur le parc
- Exemple d'utilisation sur une vanne de fond de type papillon
 - Question:

 Le risque de rupture des goupilles de liaison arbre-lentille est-il significatif?
 - Éléments de réponse : obtenus par analyse des causes de défaillance des vannes papillons recensées dans la base

EXEMPLES D'UTILISATIONS DE LA BASE Raisonnement par analogies (2/2)

- Population des vannes papillons recensées dans la base :
 - 101 vannes (7 742 années x vannes)
 - 23 défaillances dont 16 liées à la perte de manœuvrabilité
- Analyse des 16 dysfonctionnements et composants en cause dans les pertes de manœuvrabilité constatées :

Composant en cause	Nature de la défaillance	Nombre
 Conclusion de l'analyse: Risque de rupture de goupille lié à la corrosion jugé peu probable (0 cas) Intérêt des limiteurs d'efforts (2 cas de rupture liées à des sur-efforts) 		
	Rupture des goupilles sur effort exceptionnel hors dimensionnement	2

CONCLUSIONS

- Le renseignement systématique de la base de données HyMéDiag lors des diagnostics et des Revues de Sûreté permet plusieurs bénéfices
 - Facteur d'uniformisation des pratiques de diagnostic des vannes
 - Vérification technique des diagnostics et des Revues de Sûreté facilitée
 - Recherche par analogies des problématiques déjà rencontrées
 - En amont des ETC : meilleur ciblage des composants élémentaires à examiner
 - Aide à la formation des nouveaux chargés d'affaire diagnosticiens
- Un travail conséquent d'approfondissement reste à effectuer afin de rendre plus robuste l'estimation des taux de défaillance
 - Traiter de façon séparée des sous-ensembles de vannes en fonction de leur fréquence d'utilisation
 - Prendre en compte d'autres critères de regroupement (hypothèses de conception, constructeur, conditions particulières d'utilisation...) afin de cibler des sous-ensembles plus homogènes en termes de fiabilité
 - Confronter ce retour d'expérience à celui d'autres exploitants de barrages

