

Journée technique du groupe Jeunes du CFBR Bulletin CIGB 180

Leçons tirées d'études de cas de la surveillance des barrages

Le bulletin

Réalisé par le Comité Technique, sur la période 2012-2017, sous la co-présidence de Chris Oosthuizen et Jürgen Fleitz.

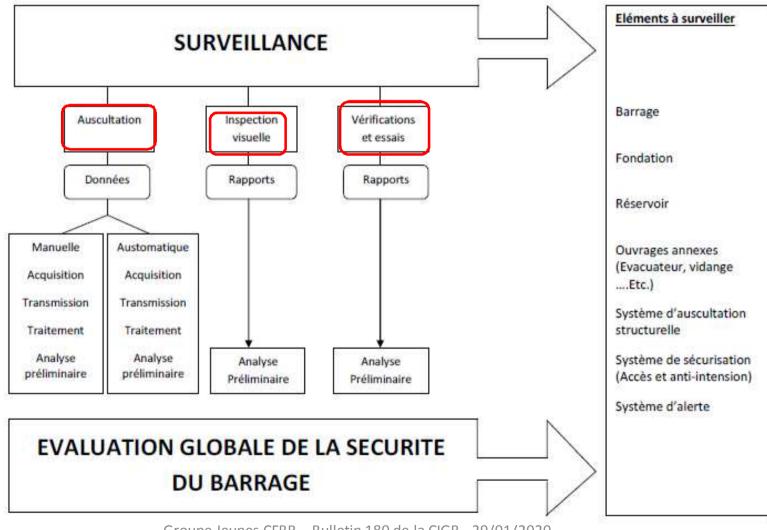
Les études de cas visent à couvrir des expériences vécues en relation avec la surveillance des barrages, et se répartissent selon les catégories suivantes :

- a) Méthodes d'amélioration de la qualité et de la fiabilité de l'information ;
- b) Traitement des données et techniques de représentation ;
- c) Diagnostic efficace pour déterminer les schémas de comportement ;
- d) Systèmes de surveillance dédiés pour optimiser les coûts de maintenance, de réhabilitation et les autres coûts du cycle de vie ;
- e) Impacts de la surveillance sur la prévention des incidents et ruptures de barrages ;
- f) Revue des systèmes de gestion de la surveillance des barrages.

Objectifs de la surveillance

Définition de la surveillance des barrages, telle que proposée par le Comité Technique de la CIGB.

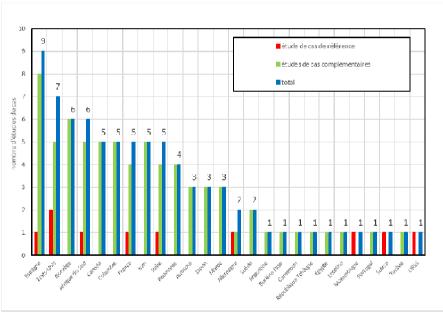
« La surveillance des barrages vise à gérer le(s) risque(s) et réduire au mieux leur probabilité d'occurrence, en mobilisant les moyens nécessaires à l'identification précoce d'évènements indésirables susceptibles d'engendrer une éventuelle défaillance ou rupture. Toute organisation d'un processus de surveillance devrait donc viser à faire en sorte que l'on réduise au maximum les probabilités de défaillance par :


- L'identification des modes de rupture et leur prise en compte dans un programme de surveillance,
- La détection précoce de phénomènes avant-coureurs et évolutifs qui pourraient mener à ces mécanismes de rupture,
- La connaissance, via des paramètres physiques, du comportement du barrage et de ses composantes ».

Activités de surveillance

Rappel du périmètre des activités de surveillance des barrages, tel que pris en compte par le Comité Technique de la CIGB.

9 cas de référence :


- Barrage de Malpasset (importance de la surveillance des aspects géologiques);
- Barrage du <u>Vajont</u> (importance de l'auscultation des versants de la retenue);
- Barrage de <u>Zeuzier</u> (effet extrême de la diminution des pressions interstitielles);
- Barrage de <u>Teton</u> (importance de disposer d'observations visuelles appropriées);
- Barrages de Dnieprostoi, de Möhne et de l'Eder (bombardements et explosifs pendant la seconde guerre mondiale);
- Barrage de Folsom (rupture de vanne, périodiquement essayée mais seulement partiellement);
- Barrage de Cahora Bassa (intérêt d'une installation appropriée pour la durée de vie des appareils d'auscultation);
- Barrage de <u>Zoeknog</u> (rupture annoncée par les capteurs de pression interstitielle dont les mesures ont été ignorées);
- Barrage de <u>Tous</u> (défaillance des systèmes de secours).

Et 71 études de cas, remontées de 22 pays.

Statistiques sur l'échantillon de barrages traités par les études de cas :

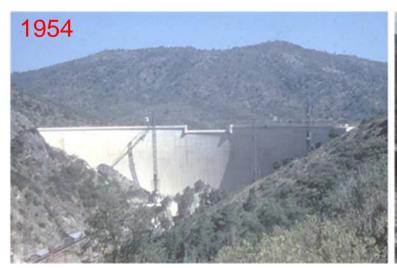
- Majoritairement des barrages en remblais (54%)
- Âge moyen d'un peu plus de 40 ans
- Hauteur moyenne de l'ordre de 70m

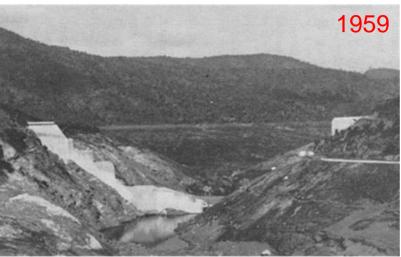
Chaque étude de cas a été décrite en considérant :

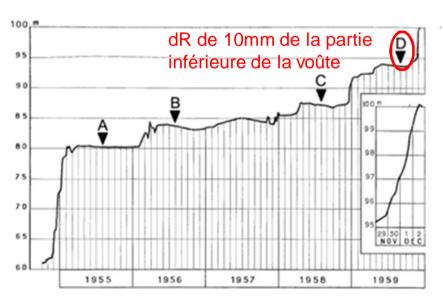
• La (ou les) catégorie(s) de rattachement

(a) Méthodes d'amélioration de la qualité et de la fiabilité de l'information	(b) Traitement des données et techniques de représentation	(c) Diagnostic efficace pour déterminer les schémas de comportement	(d) systèmes de surveillance pour optimiser les coûts de maintenance, réhabilitation et autres coûts du cycle de vie	(e) Impacts de la surveillance sur la prévention des incidents et ruptures de barrages	(f) Revue des systèmes de gestion de la surveillance des barrages	
28,8%	26,3%	51,3%	37,5%	63,8%	10,0%	

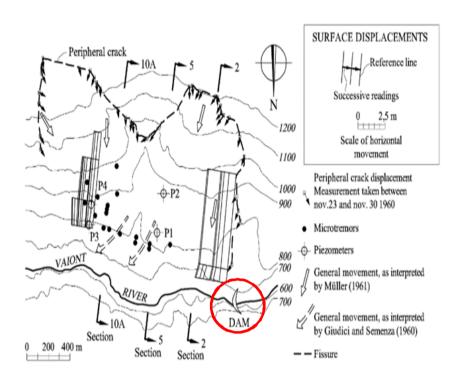
• Et quand cela était pertinent des aléas ou des initiateurs des modes de défaillance.

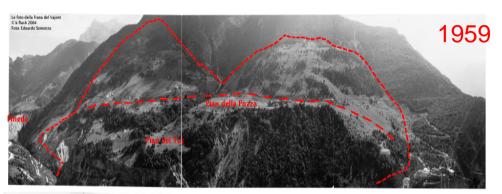

Initiateur ou mode potentiel de rupture/défaillance		Nombre d'études de cas	
Infiltration	26	32,5%	
Érosion (fondation et corps du barrage)	16	20,0%	
Pressions interstitielles	10	12,5%	
Fracturation hydraulique	5	6,3%	
Déformation de la fondation rocheuse	6	7,5%	
Tassements, déformations et déplacements (corps du barrage)	10	12,5%	
Sous-pressions Sous-pressions	8	10,0%	
Glissement (corps du barrage)	1	1,3%	
Chargement thermique	1	1,3%	
Vieillissement du béton et fissuration	7	8,8%	
Membranes d'étanchéité	4	5,0%	
(fissures et comportement)			
Stabilité des pentes du barrage	4	5,0%	
Érosion aval de la rivière	1	1,3%	
Glissement des versants de la retenue		3,8%	
Séisme	3	3,8%	
Sédimentation	1	1,3%	


Les études de cas traitent de très nombreux modes de défaillance susceptibles d'être rencontrés lors de la construction, de la mise en eau ou en exploitation.

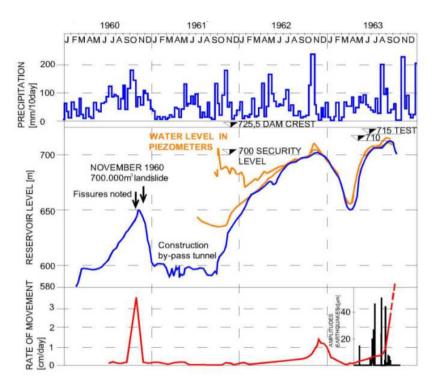


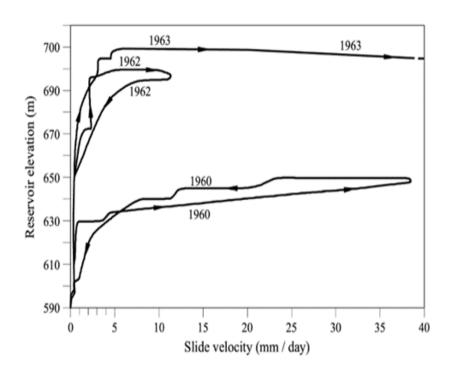
Cas de référence : Malpasset (France)




- Dispositif d'auscultation pas adapté vis-à-vis d'un mode de défaillance possible, mais non identifié à l'époque (pas de mesure de pressions ou de déformation de la fondation et des appuis).
- Nécessité de disposer d'une organisation avec analyse « continue » des mesures d'auscultation, en particulier lors de la mise en eau.

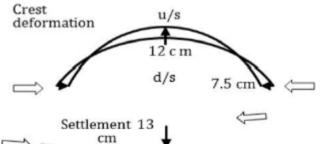
Cas de référence : Vajont (Italie)

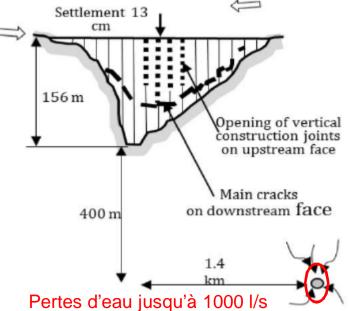


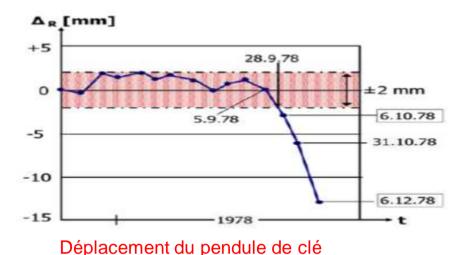


- Le risque est identifié et une auscultation est en place : déplacements de surface, piézomètres (mais tubes ouverts et situés au dessus de la surface de rupture indiquant une valeur moyenne de pression),
- On pense connaître et comprendre le comportement du glissement à partir des observations faites au cours des premières années d'exploitation.

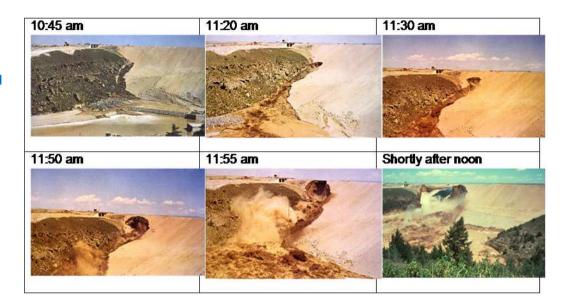
Cas de référence : Vajont (Italie)




- Une auscultation s'appuyant sur des connaissances et une modélisation erronées du mode de défaillance possible est insuffisante,
- Elle peut même s'avérer dangereuse lorsque des critères de sécurité sont déterminés et extrapolés à partir des seules observations : ici la corrélation entre niveau de la retenue et la vitesse de déplacement en surface, sans tenir compte de l'effet potentiel du niveau absolu de la retenue


Cas de référence : Zeuzier (Suisse)

Rawil Tunnel exploration adit


- L'auscultation en place et la bonne connaissance du comportement de la voûte ont permis une détection précoce de l'anomalie et des actions en conséquence (baisse du plan d'eau, auscultation renforcée)
- Importance d'adapter la surveillance en cas de travaux souterrains à proximité d'un barrage (à noter également des déformations du barrage de Nalps lors du percement du tunnel du Saint Gothard en 2006).

Cas de référence : Teton (US)

Séquence des évènements :

- Début de mise en eau le 3/10/1975 (cote 1542m)
- Le **3/06/1976**, détection de 2 venues d'eau claire à 400 et 450m à l'aval (cote proche de l'EVC),
- Le 4/06/1976, détection d'une nouvelle venue d'eau 40 à 60m à l'aval,
- Le 5/06/1976 à 7h première venue d'eau détectée sur le barrage puis accélération des évènements (photos de droite).
 Rupture à une cote de 1616m (9m sous la crête). Ordre d'évacuation donné vers 10h30.

- Importance de la surveillance visuelle, et sur un périmètre pas limité au seul barrage,
- Cinétique potentiellement très rapide de certains phénomènes surveillés,
- Nécessité d'observer des paliers lors de la première mise en eau, avec : un programme de surveillance adapté, une capacité de contrôle du niveau de la retenue et un plan d'évacuation,
- Prise en compte dès la conception d'un dispositif de collecte des débits de drainage et de fuites pour les barrages en remblais.

Cas de référence : Zoeknog (AFS)

Séquence des évènements :

- Début de mise en eau en décembre 1992,
- Le 11/01/1993, une cellule de pression amont du noyau de l'un des 2 profils auscultés indique le niveau de la retenue. Cette information est considérée comme erronée,
- Le 24/01/1993, un garde entend un bruit d'écoulement et découvre une venue d'eau le long du conduit. 6 heures plus tard la rupture du barrage se produit.

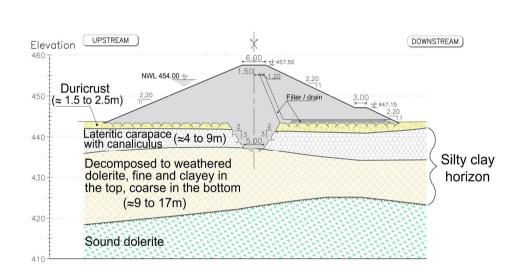
- Ne pas écarter une information fournie par un capteur sans une instruction préalable rigoureuse,
- Des inspections visuelles régulières auraient pu permettre une détection anticipée de l'érosion le long du conduit (et éventuellement d'engager des actions pour éviter la rupture),
- La surveillance ne résoud pas les problèmes de conception et de construction (tapis de drainage mal positionné et argiles mal compactées le long du conduit).


Cas de référence : Tous (Espagne)

Séquence des évènements :

- Pluies très importantes les 20 et 21 octobre 1982 (500mm en 24h),
- EVC vanné: perte du réseau électrique, 1 diesel de secours en réparation, le second non opérable (sous eau) → Impossibilité d'ouvrir les vannes,
- Début de déversement le 20/10 à 16h50 et rupture à 19h15, avec une lame d'eau de 1,10m au dessus de la crête

- Pour les EVC vannés, nécessité de disposer de sources d'énergie indépendantes avec la fiabilité requise (essais périodiques, maintenance),
- Besoin d'une organisation et de procédures adaptées à la gestion des risques et à leur contrôle,
- En Espagne, a conduit à la mise en place de réseaux de prévision des crues pour anticiper ces situations.

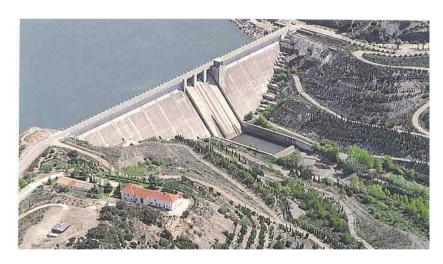


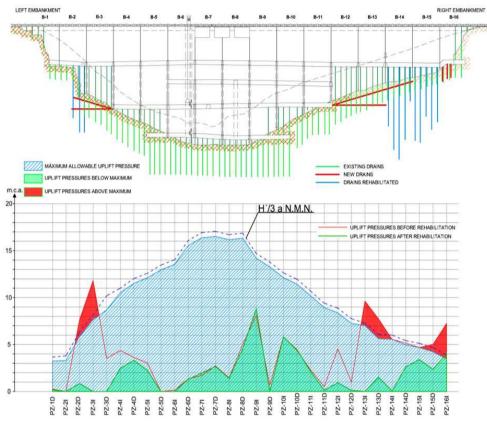
Cas pédagogiques : Comoe (Burkina Faso)

La mesure des débits globaux à l'aval du barrage a permis de mettre en évidence une dégradation des conditions de perméabilité en fondation :

- Sur la base d'un suivi et d'une analyse pluri-annuelles, depuis la mise en eau,
- Et d'engager des travaux lorsque les débits ont atteint un niveau qui n'était plus jugé acceptable.

- Importance d'une surveillance continue et rigoureuse sur le long terme
- Apport des modèles d'analyse des données d'auscultation.





Cas pédagogiques : Siurana (Espagne)

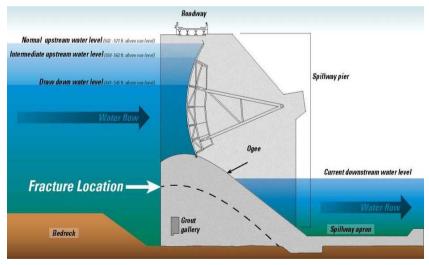
Barrage poids mis en eau en 1972, nécessitant une évaluation de la performance du drainage en fondation :

- Mise en place de piézomètres,
- Analyse des sous-pressions mesurées en regard de seuils d'acceptabilité calculés,
- Travaux ciblés d'amélioration du drainage.

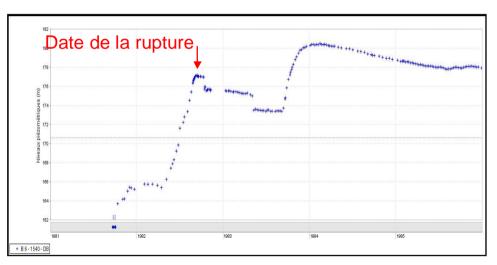
- Apport de la surveillance au diagnostic de sûreté,
- Optimisation des travaux et des coûts de maintenance.

Cas pédagogiques : Wanapun (US)

Déplacement mesuré de 4 cm vers l'aval d'une pile d'un barrage mobile, après détection par inspection visuelle d'un déplacement en crête et de fuites à l'aval :


- Baisse immédiate de la cote,
- Travaux correctifs (reprise de l'ancrage des seuils par tirants).

- Importance de l'inspection visuelle
- Déclenchement immédiat de mesures de réduction des risques.



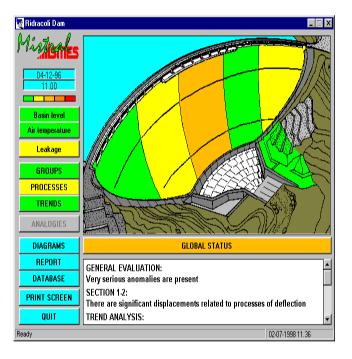
Cas pédagogiques : Mirgenbach (France)

Glissements des recharges aval et amont du barrage en 1982, juste avant la fin de construction :

- Glissement de la recharge amont puis de la recharge aval quelques jours après (longueur de l'ordre de 100m, avec hauteur de la rupture de 2-3m),
- Le barrage était ausculté mais la position amont-aval erronée d'une cellule a conduit à ne pas exploiter correctement les mesures qu'elle donnait,
- Travaux de reconstructions réalisés avec mise en eau en 1985 et un comportement satisfaisant depuis.

Mesures de pression interstitielle sur 1 cellule à corde vibrante


- Importance d'une auscultation dès la phase chantier pour les ouvrages en remblais,
- Traçabilité et rigueur lors de la pose des capteurs et du relevé des paramètres nécessaires au traitement et à l'interprétation des mesures (en particulier pour les capteurs noyés).

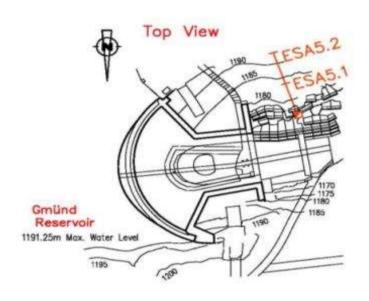


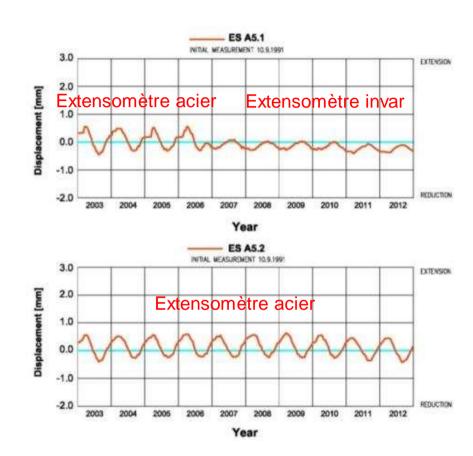
Cas pédagogiques : Informatisation des processus de surveillance

Plusieurs cas mettant en avant l'apport de logiciels spécialisés :

- Pour la collecte, la gestion et le traitement des données,
- L'automatisation de la détection des écarts et des alertes.

- Le système d'information et les bases de données associées sont aujourd'hui des éléments clés du processus de surveillance, avec de plus en plus de services et fonctionnalités associés,
- Indispensable en cas de télémesure du dispositif.





Cas pédagogiques : Gmuend (Autriche)

Mesure des déformations du confortement de l'appui RG par des extensomètres:

- Initialement des barres en acier,
- Doublée sur l'un des 2 extensomètres par une barre en invar en 2006.

- Attention à l'interprétation des mesures ; le capteur est un élément (parfois perturbateur / générateur de biais) du processus de mesure d'un phénomène physique,
- Nécessité de bien connaître les technologies de mesures, leurs limites ainsi que les conditions d'installation des capteurs.

