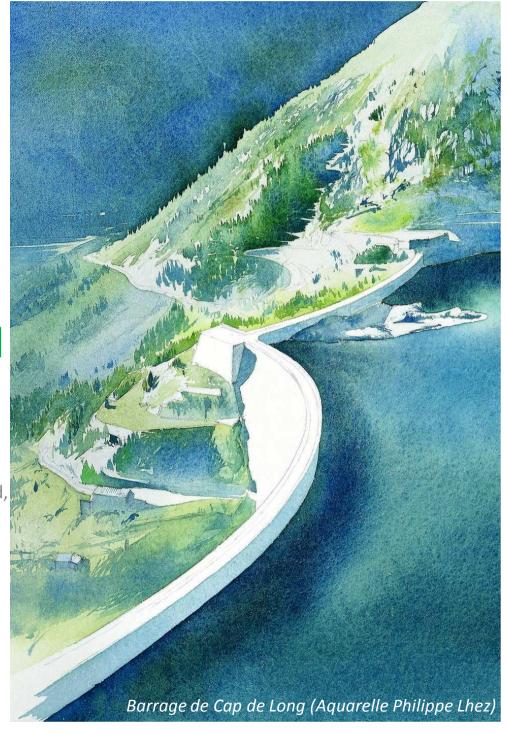


Thème : Géologie et nature des fondations

IMPACT DES IMPREVUS DE LA FONDATION: GIBE III (ETHIOPIE)


VIBERT Christophe, FERARU Dan, MINE Edouard, IANOS Silviu

Colloque CFBR – Fondations des Barrages 8 et 9 avril 2015 – Chambéry

SOMMAIRE

1. LE PROJET ET LE MODELE GEOTECHNIQUE DE LA FONDATION DU BARRAGE

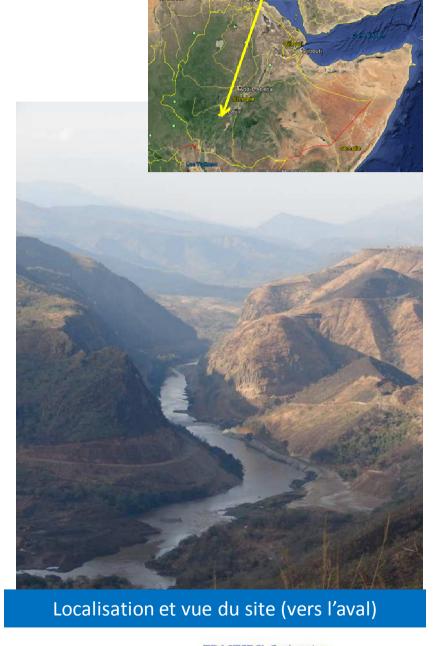
Présentation du projet et du contexte contractuel Géologie et caractéristiques géotechniques des fondations déduites des investigations

2. EXCAVATIONS ET REVISION DU MODELE GEOTECHNIQUE

Indices d'une altération plus forte que prévue par le modèle géotechnique initial de la fondation Observations faites lors de l'excavations des fondations

3. SPECIFICITES DU SITE ET MODIFICATIONS APPORTEES AU PROJET

L'étanchéité de la fondation Adaptations du projet initial de traitement des fondations


LE PROJET

Projet hydroélectrique de 1.870 MW

- Barrage BCR de 246m de hauteur
- Usine de surface, 10 unités
- Autres travaux d'excavation
 - ❖ Trois tunnels de dérivation (Ø14m, 8m)
 - Ouvrages de prise d'eau
 - Deux conduites d'amenée

Contexte contractuel

- Début de construction en 2007
 - Contrat EPC
 - ❖ Revue du projet par TEF/COB pour le compte du Client
- Absence d'investigations du site avant le contrat

CONTEXTE GEOLOGIQUE

Basalte

__Surface d'érosion

Trachyte légèrement altéré

Trachyte sain

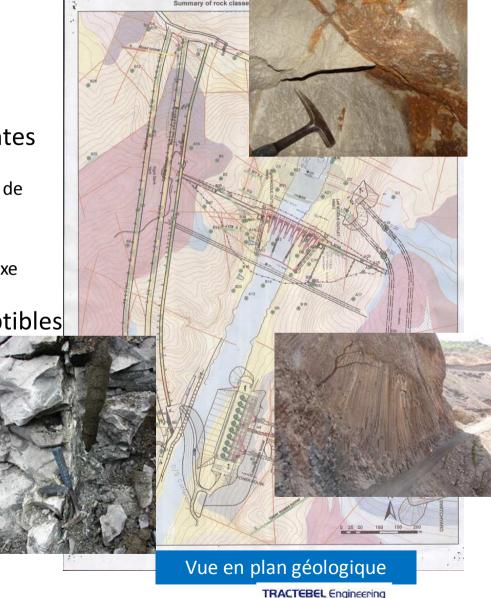
Contact cisaillé

Ignimbrites

Roches volcaniques

- Trachyte formant l'essentiel de la fondation
 - Définition de deux catégories de trachyte
 - Trachyte sain en profondeur
 - ❖ Trachyte légèrement altéré au-dessus
- Autres roches
 - Surface d'érosion au contact supérieur des trachytes
 - Formation volcaniques plus récentes déposées par la suite (ignimbrites, puis coulées de basalte)

Stratigraphie et coupe sur l'axe du barrage


GEOTECHNIQUE

- Deux familles de discontinuités principales
 - Discontinuités nord-sud persistantes
 - Ces discontinuités se trouvent donc subparallèles à la rivière et aux tunnels de dérivation
 - Discontinuités est-ouest
 - ❖ Faible espacement en rive droite sur l'axe du barrage (10-50 cm)

Absence de discontinuités susceptibles

de délimiter des coins rocheux

- Sur affleurements
 - Trachyte légèrement altéré
 - Remplissage d'oxydes de fer indurés
 - Trachyte sains
 - Joints le plus souvent fermés
 - Orgues basaltiques

CARACTERISTIQUES DU MASSIF

- Modèle géotechnique de l'Entrepreneur
 - Définition d'un critère de rupture de type Hoek -Brown
 - Essais réalisés sur échantillons secs
 - Mais excluant de fait les tronçons altérés rencontrés dans les sondages

	Basalte	Trachyte sain	Trachyte légèrement altéré						
Résistance à la compression uniaxiale (échantillons secs)									
Nombre de tests	17	14	26						
Min-Max (MPa)	264-382	77-167	32-134						
Moyenne (MPa)	319	98 (*)	67						
Critère de rupture d	Critère de rupture du massif rocheux (Hoek-Brown)								
GSI	65	60	55						
mi	25	14	20						
(*) Valeur moyenne pour trachyte gris-clair									

- Déformabilité in-situ
 - Dilatomètre, vérin plat, essais à la plaque
 - ❖ Valeurs retenues
 Trachyte sain 15 MPa
 Trachyte altéré 10 Mpa
 (12 et 8 MPa pour D=0,5)

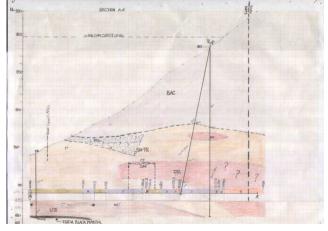
	Massif rocheux	Trachyte sain			Trachyte légèrement altéré		
		DT	FJT	PLT	DT	FJT	PLT
,	Nombre de tests	8	-	2	13	41	3
	Valeurs min-max (GPa)	2.1-7.6	-	3.5-20.5	0.1-6.8	0.3-21.0	4.0-35.0
	Min-Max 90% (GPa)	4.5-7.0	-	-	1.6-3.6	6.4-8.5	-
	Valeur moyenne (MPa)	5.8	-	9.5	2.6	7.4	16.5
	Ecart-type (Gpa)	2.1	-	-	2.2	3.8	-
	<u>Légende</u>						
	DT: dilatomètre membrane s						
	FJT: Vérin plat (largeur 345 m						
	nsomètres)						

UN MODELE PARFAIT?

- Observation d'auréoles de diffusion de fluides
 - En affleurement et en galerie
 - Témoignent visiblement d'une altération, progressant depuis les fractures
 - ❖ Une unité de trachyte altéré ajoutée au modèle de l'Entrepreneur (R_c 32 MPa)
- Cavités plurimétriques dans les rives
 - ❖ Apparaissent comme des cavités lessivées de leur contenu par la rivière
- Effritement de carottes sorties intactes
 - Altération en sable verdâtre
 - Visiblement conséquence d'une altération hydrothermale ayant progressé depuis les fissures du massif

INITIATION DE LA CONSTRUCTION

Eboulement dans tunnel de dérivation central


❖ 6.000 m³ de sable-silteux verdâtre pratiquement sec s'écoulent dans le tunnel

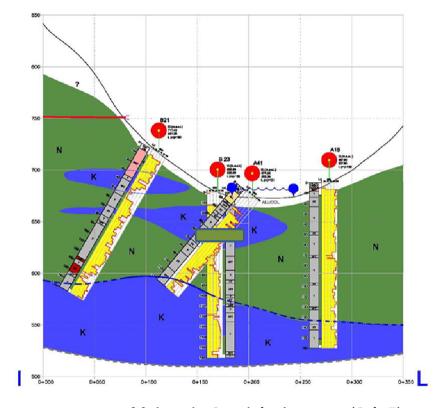
Le rôle de l'altération hydrothermale se précise

❖ L'Entrepreneur et son concepteur prennent rapidement conscience de l'importance de cette altération pour la fondation

❖ L'image d'une fondation profonde contenant du matériau altéré, en quantité variable suivant l'importance et la densité des fractures du massif s'impose peu à peu

EXCAVATIONS DU BARRAGE

- Au-dessus du niveau de la nappe
 - Le matériau d'altération est le plus souvent oxydé
 - Couleur brun-clair du trachyte superficiel
- Sous le niveau de la nappe
 - Absence d'oxydation
 - ❖ Matrice rocheuse au voisinage des fissures diversement affectée par l'exposition à l'air ou en présence d'eau
 - Remplissage de fissures et « karsts » par les matériaux d'altération: sable silteux ou matériaux prenant cette forme en présence d'eau
 - ❖ Couleur du massif: blanc à gris-vert
- La qualité de la fondation ne s'améliore pas toujours avec la profondeur!

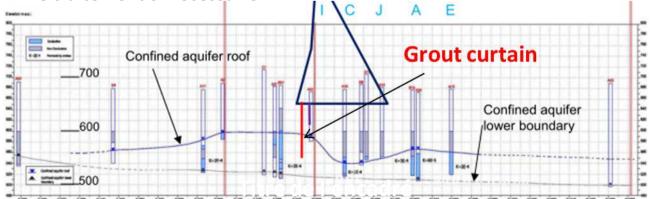


ETANCHEITE DE LA FONDATION

- Dans les rives
 - Niveau de la nappe phréatique s'élevant peu au-dessus de la rivière
- Contraste de perméabilité marqué en fondation
 - Partie supérieure quasiment imperméable
 - Aquifère « profond »
 - ❖ Profondeur variable de 70 à 130 m environ sous la fondation (base de l'aquifère vers 160 m, argiles volcano-sédimentaires)
 - ❖ Identifié par des sources en amont et dans les fouilles du barrage (T 33°C, contenu relativement élevé de Na et Ca)
 - * Remontées locales le long de fissures subverticales

Moins de 8 unités-Lugeon (3 à 5) 8 à 15 unités-Lugeon ou plus

Coupe sur l'axe du barrage



IMPACTS SUR LE PROJET

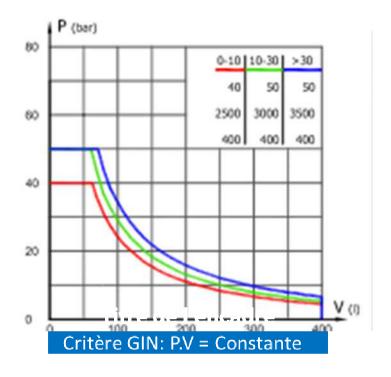
- Recommandations de reconnaissances complémentaires
 - Attention de l'Entrepreneur attirée sur la nécessité d'une surveillance précise de l'aquifère profond
 - Zones d'alimentation et débouchés à préciser
 - Moyens de drainage augmentés au droit des sources chaudes de la fondation, pour surveillance et détection de tout débourrage potentiel
- Profondeur du voile d'injection
 - L'Entrepreneur a fait le choix de conserver la géométrie initiale du voile
 - Le voile s'arrête dans l'aquifère profond; les galeries doivent permettre de compléter le traitement si nécessaire

Géométrie approximative de l'aquifère profond (coup le long de la rivière)

TRAITEMENT DE SURFACE

Traitement de surface classique

- Nettoyage et curage de toutes les zones altérées de l'emprise de la fondation
 - Discontinuités les plus importantes de la fondation
 - « Poches » de matériau altéré dans les zones de fracturation dense
- Remplissage par du béton


VOILE D'INJECTION

Traitement de la partie courante du voile

Hors zones altérées (zones de fracturation dense comportant une proportion notable de matériau altéré)

 Application d'un critère GIN de 300-350 MPa.l/m, objectif 3 unités-Lugeon

- Difficultés rencontrées dans l'aquifère « profond », captif
 - ❖ Venues d'eau artésiennes, problème de stabilité de certains trous, prises plus élevées
 - ❖ Absence d'effet de serrage notable
 - Objectif en terme de perméabilité difficile à réaliser
 - Un critère de réduction des prises de coulis a été adopté (quaternaires si >100l/m, quinaires si >50l/m)

VOILE: ZONES ALTEREES

- Traitement des zones altérées de la fondation
 - Conception de la méthode « lessivage haute pression », puis injection
 - Objectif: retirer le plus de matériel altéré possible
 - Utilisation d'un outil de jet-grouting (sans coulis),
 pour lavage baute pression des trous dans le

pour lavage haute pression des trous, dans le but d'évacuer le matériel altéré

- Opération suivie par des injections classiques
- La méthode n'a pas démontré son efficacité
 - Quantité de matériel altéré remontée avec les eaux de lavage non significative
- Les galeries permettent de venir compléter
 les injections sur tout le voile si nécessaire

Zone altérée de la rive droite: fracture injectée

CONCLUSIONS

Altération hydrothermale

- ❖ Susceptible d'impacter notablement un projet si non identifiée à temps
- Les roches altérées doivent être prises en compte, même s'il n'est pas possible d'en tirer des échantillons pour essais de laboratoire
- Le massif peut être de moindre qualité en profondeur!

L'impact sur la conception du voile d'injection est significatif

- ❖ Si les recommandations d'injection à forte pression des joints sont suivies, le matériel altéré est chassé et repoussé à l'intérieur du massif
- L'Entrepreneur et son concepteur ont sans conteste déployé de gros efforts en ce sens

Auréoles d'altération

(zone oxydée, en surface)

