

Variabilité spatiale de l'érodibilité des sédiments cohésifs dans les rivières à graviers : Mesure in situ et modélisation numérique

(1)

(2)

Contexte et objectifs

- Les sédiments fins dans les rivières à graviers
 - Transit important de sédiments fins et concentration en MES fortes
 - Une capacité importante de stockage des sédiments dans les lits
 - Dépôts présents en surface des bancs et dans la matrice de graviers
 - Des dynamiques de dépôt et d'érosion de ces sédiments fins mal comprises
- Les enjeux de gestion des sédiments fins
 - Dégradation de la qualité du milieu lorsque les concentrations sont élevées
 - Sureté des ouvrages hydroélectriques (vannes de fond)
 - Risque d'inondation lié à l'exhaussement des bancs de graviers en cours de végétalisation ou végétalisés (ex : l'Isère en Combe de Savoie)
- Des dépôts de sédiments fins très hétérogènes
 - <u>Spatialement</u> : dépôts marginaux, surfaciques, en queue de banc, en chenal secondaire ou dans les zones abritées par la végétation
 - <u>En termes de types de particules</u> : large gamme de tailles allant de sédiments cohésifs à des sédiments sableux
- Focus sur les dépôts de surface

Quelle est la variabilité spatiale de l'érodibilité des sédiments fins présents dans les lits des rivières à graviers ?

Est-ce que les modèles numériques sont sensibles à cette variabilité ?

Dépôts en chenal secondaire

Dépôts en queue de banc

Dépôts

marginaux

Sites d'étude

- Deux rivières représentatives des rivières alpines
 - Rivières énergétiques
 - Flux de sédiments intermittents
 - Capacité de stockage des sédiments dans le lit et sur les bancs
- Isère en Combe de Savoie
 - <u>Rivière aménagée</u> avec la présence de barrages (Aigueblanche en amont du site d'étude)
 - Bancs alternés avec des dépôts fins et de la végétation
 - Largeur du lit : 80-100 m
 - Pente de 0.16%

Galabre : Observatoire Draix-Bléone

- <u>Rivière non-aménagée</u>
- Multiples chenaux avec des dépôts de sédiments fins
- Largeur du lit : 5-10 m
- Pente de 2%

Mesures d'érodibilité

- Deux appareils de mesure
 - <u>EROMES</u> : érosion générée par la rotation d'une hélice
 - <u>« Cohesive Strength-Meter » (CSM)</u> : érosion générée par des jets d'eau verticaux
- Des données complémentaires
 - <u>CSM</u> : mesure rapide, permet de réaliser de nombreuses mesures
 - <u>EROMES</u> : permet de décrire plus précisément les taux d'érosion mais la mesure prend plus de temps
- Traitement des signaux EROMES et CSM pour en extraire les deux variables d'intérêt
 - Contrainte critique d'érosion : τ_{ce}
 - Taux d'érosion (constante de Partheniades) : *M*
- Flux d'érosion fonction de ces deux variables dans la modélisation (équation de Partheniades)
 - $\phi_E = M\left(\frac{\tau}{\tau_{ce}} 1\right)$

Propeller

Pipette

Andersen (2001) Harris et al. (2016)

EROMES

Mesures CSM

- Principe de la mesure
 - La chambre du CSM est insérée dans sédiment
 - Le test d'érosion est automatisé → Succession de jets d'eau verticaux appliqués sur le sédiment (toutes les 6 sec) avec une pression de jets croissante
 - L'érosion génère de la turbidité dans la chambre du CSM → suivi de la transmission optique (proxy de l'érosion) dans la chambre à travers des LED émettrice et réceptrice
- Traitement du signal CSM
 - Tracé d'un profil d'érosion : transmission (%) moyenne du palier en fonction de la pression du jet (kPa)
 - 3 phases d'érosion durant un essai CSM :
 - <u>Phase 1</u> : l'érosion n'a pas débutée (transmission 100 %)
 - <u>Phase 2</u> : phase d'érosion, diminution de la transmission optique avec l'augmentation de la pression des jets
 - <u>Phase 3</u> : fin de l'essai (transmission proche de 0 %)
 - <u>Contrainte critique d'érosion</u> : Transition entre les phases (1) et (2) du signal \rightarrow pression critique du jet $\tau_{ce,jet}$ (kPa)
 - Taux d'érosion : Pente de la phase (2) du signal \rightarrow 'suspension index' s_i (%/kPa)

5 min / mesure

Utilisation in situ

Campagne d'août 2019 sur le Galabre

- Campagne de mesure du <u>26 au 29 août 2019</u>
- Débits d'étiage durant l'été sur le Galabre : environ $0.1 m^3 s^{-1}$ hors événements
- Plusieurs crues durant le mois de juillet (01/07, 15/07, 30/07) et août (24/08)
 - Transport de molasse pendant les crues de juillet (débits entre 1 et 4 m^3 . s^{-1})
 - Transport de marne pendant la crue du 24/08 ($Q = 0.1 \ m^3 \ s^{-1}$)
- Organisation spatiale des dépôts pendant la campagne
 - <u>Proche de l'écoulement</u> : dépôts (marginaux et en eau) de marne de la crue du 24/08
 - <u>Plus en altitude</u> : dépôts (surfaciques) de molasse des crues de juillets

surfaciques

- Molasse

Décrue 15/7/19 5h30 (Molasse) $MES_{max} = 100 \ g/L$ $Q_{max} = 4.5 \ m^3 \ s^{-1}$

Décrue 24/8/19 5h30 (Marne) $MES_{max} = 25 g/L$ $Q_{max} = 0.1 m^3 s^{-1}$

Campagne d'août 2019 sur le Galabre

Dans quelle mesure l'érodibilité des sédiments fins varie spatialement ?

- Quels sont les principaux facteurs de contrôle de la variabilité de l'érodibilité?
- Campagne d'août 2019 sur le Galabre
 - Campagne de mesure la plus riche en mesures (122 mesures CSM) sur le tronçon
 - Investigation de la variabilité spatiale à petite et à grande échelle
- Sur l'échelle du tronçon
 - Pas de structuration spatiale des propriétés d'érosion
- Sur l'échelle du transect → forte variabilité
 - Les dépôts situés à une altitude moyenne sont les plus résistants
 - Structuration des dépôts en fonction de la position et de l'humidité du sédiment

Campagne d'août 2019 sur le Galabre

Modélisation hydro-sédimentaire du Galabre

- Construction d'un modèle numérique <u>T2D-GAIA</u> sur un tronçon d'environ 1 km sur le Galabre (stage J. Montariol)
- <u>Conditions limites</u> : débit à l'amont (mesures à la station amont) et hauteur d'eau à l'aval (loi de Manning-Strickler)
- Pas d'évolution du lit de gravier (pas de charriage), <u>uniquement</u> <u>reprise des sédiments cohésifs</u> initialement présents
- Calibration du coefficient de frottement (Strickler) à l'aide de :
 - Lignes d'eau à bas débit : mesures DGPS sur le terrain ($Q < 0.7 m^3 s^{-1}$)
 - <u>Hauteurs d'eau en crue</u> : appareils photo time-lapse placés sur le terrain $(1.4 \ m^3. \ s^{-1} < Q < 5.6 \ m^3. \ s^{-1})$
 - <u>Champs de vitesses à l'étiage</u> : vidéos prises à la main ($Q = 0.6 m^3 \cdot s^{-1}$)
 - Champs de vitesses en crue : vidéos à la station 'Riple' (1.4 m^3 . $s^{-1} < Q < 5.6 m^3$. s^{-1})

Un paramètre de Strickler de $K_s = 25 \ m^{1/3}$. s^{-1} permet de minimiser les écarts modèle/mesures et a été choisi

Modélisation hydro-sédimentaire du Galabre

• Calibration du coefficient de frottement (Strickler) : exemple LSPIV

open TELEMAC-MASCARET

Paramétrage du modèle – Etat initial

- Définitions des zones de dépôts basée sur les événements sur le Galabre sur la période 2007-2019
 - Zone d'écoulement sans dépôts : Q < $0.05 \ m^3$. s^{-1}
 - Dépôts en eau : $0.05 \ m^3 \ s^{-1} < Q < 0.1 \ m^3 \ s^{-1}$
 - Dépôts marginaux : $0.1 < Q < 1 m^3 \cdot s^{-1}$
 - Dépôts surfaciques : $1 < Q < 5 m^3 \cdot s^{-1}$

- 5 cm de dépôts dans chaque zone à l'état initial, sur la base de mesures :
- Masse totale de sédiments fins à l'état initial : 819 t

Scénarii « érosifs » et crue schématique

- Différents scénarii sont définis, où les variables d'érosion sont spatialisées (S) ou non-spatialisées (NS)
 - Scénarios médians
 - Scénarios érosifs
 - Scénarios peu érosifs
 - Scénarios très érosifs
 - Scénarios très peu érosifs
- Deux crues schématiques 'Er1' ($Q_{max} = 1.6 m^3 . s^{-1}$) et 'Er2' ($Q_{max} = 6.8 m^3 . s^{-1}$) basées sur les crues du Galabre de septembre et octobre 2019

chématique	'Peu érosif'			'Médian' ↓		'Erosif' ↓		'Très érosif'		
'Très peu érosif'			ł							
Variables spatialisées	STPE		SPE		SM		SE		STE	
Dépôt	$ au_{ce}$	М	$ au_{ce}$	М	$ au_{ce}$	М	$ au_{ce}$	М	$ au_{ce}$	М
Surfacique	1.9	1.5	1.4	3.8	1.1	6.3	0.6	10.1	0.4	20
Marginal	4.8	0.09	3.1	3.8	2.3	4.7	1.8	6.7	0.04	10
En eau	3.4	0.1	2.1	3.5	1.6	5.5	1.1	8.6	0.03	16
Variables non-spatialisées	NSTPE		NSPE		NSM		NSE		NSTE	
Tous les dépôts	3.2	0.8	2.2	3.8	1.6	5.5	1.1	8.6	0.2	15.6

 $\phi_E = M\left(\frac{\tau}{\tau_{ce}} - 1\right)$

Colloque Transport sédimentaire : Rivières et Barrages réservoirs Saclay – 15 au 17 mars 2022

Dans quelle mesure le modèle est il sensible à cette variabilité spatiale ?

Y a-t-il un intérêt à spatialiser les variables d'érodibilité (τ_{ce} et M)? T4 T_{d} T_{d} T_{d}

Résultats numériques

- Forte sensibilité du modèle à la variabilité de l'érodibilité ٠
 - Evénement 'Er1' •
 - Masse érodée : $\approx 200 t (25 \% \text{ des dépôts})$
 - Ecart $SE SPE \approx 60 t (30 \%)$
 - Ecart STE STPE \approx 300 t (200 %)
 - Evénement 'Er2' •
 - Masse érodée : $\approx 500 t (60 \% \text{ des dépôts})$
 - Ecart $SE SPE \approx 100 t (20 \%)$
 - Ecart $STE STPE \approx 460 t (90 \%)$
- Différences entre les scénarii non-spatialisés (NS) et ٠ spatialisés (S)
 - Ecarts faibles pour les scénarii entre SE et SPE (< 20 t)
 - Ecarts importants pour les scénarii extrêmes : 150 t pour les scénario 'très peu érosif' pour 'Er2'
- Dynamique dans chaque zone de dépôt pour 'Er2' ٠
 - Zone marginale : la plus contributrice au flux
 - Zone en eau peu sensible et entièrement érodée pendant *l'événement*
 - La zone surfacique est la plus sensible pour l'événement 'Er2'
- Différences NS S •
 - Surestimation de la masse érodée dans la zone marginale • avec les scénarii NS
 - Sous-estimation de la masse érodée dans la zone surfacique avec les scénarii NS

6

Time (h)

50

8

S

Variabilité spatiale de l'érodibilité des sédiments cohésifs : Mesures et modélisation

NS

50

0

2

Time (h)

Conclusions et perspectives

- Conclusions
 - Les appareils de mesures in situ, en particulier le CSM, permettent de caractériser la variabilité spatiale de l'érodibilité des sédiments fins
 - Une forte variabilité spatiale de l'érodibilité des dépôts de sédiments fins a été observée
 - Les dépôts à altitude moyenne (dépôts marginaux) sur un transect sont les plus résistants
 - Les dépôts très proches de l'écoulement (dépôts en eau) ou perchés sur les bancs (dépôts surfaciques) sont peu résistants
 - Cette variabilité spatiale se traduit par une sensibilité importante dans le modèle numérique
 - Les différences ne sont pas très marquées entre les scénarii spatialisés et non-spatialisés pour l'estimation du flux total, à condition d'avoir des variables représentatives de la distribution

• Perspectives

- Sur la base de ces résultats → Recommandations sous forme de guide méthodologique de mesure de l'érodibilité in situ pour la modélisation
 - Combien de mesures faut-il réaliser pour avoir une bonne distribution de la variabilité ?
 - Dans quelle zones faut-il faire les mesures ?

Merci pour votre attention !