

University of Stuttgart Institute for Modelling Hydraulic and Environmental Systems

Department of Hydraulic Engineering and Water Resources Management Prof. Dr.-Ing. Silke Wieprecht

Changes in Sediment Yield and Reservoir Sedimentation due to Global Change

The importance of snow

Silke Wieprecht Kilian Mouris

Motivation Reservoir Sedimentation

Reservoir sedimentation depends on

- i. sediment yield (catchment)
- ii. reservoir characteristics

- 1 % of global storage volume is lost every year
- ightarrow loss not compensated by construction of new reservoirs
- \rightarrow removal and remobilization of deposited sediments is expensive (every year: US\$13 -19 billion)
- \rightarrow reservoirs are not sustainable without sediment management

Sources: Basson (2009), Schleiss et al. (2016), Palmieri (2001)

Climate Change

Global warming

(a) Change in global surface temperature (decadal average) as reconstructed (1–2000) and observed (1850–2020)

(b) Change in global surface temperature (annual average) as **observed** and simulated using **human & natural** and **only natural** factors (both 1850–2020)

(IPCC, 2021)

Universität Stuttgart

Model chain Climate Models

- Three different general circulation model (GCM) were applied
 - → EC-Earth Global Climate Projections (EC-Earth)
 - → Max-Planck-Institute Earth System Model (MPI-ESM)
 - → Hadley Centre Global Environment Model v2 (HadGEM2)
- Analysis of three Representative Concentration Pathways (RCPs): Reference period: 1981-2010

Model chain Soil Erosion and transport modeling

- Revised Universal Soil Loss Equation RUSLE (Renard et al., 1997)
- Sediment Delivery Distributed model SEDD (Ferro and Porto, 2000)
- Input data for precipitation and temperature:
- \rightarrow Climate reanalysis for calibration
- \rightarrow Climate models for predictions
- Calibration **uses** monthly suspended sediment loads
 - \rightarrow 10 months with continuous data (WL > 1 m)

Study area

Location

- Southeast Albania
- Mediterranean Climate
- Dry summers and wet winters
- Frequent snowfall in high elevations

Avg. Precipitation 1981-2010 (mm/month)

Study area

Sedimentation at the head of the reservoir

IWS

Soil Erosion and transport modeling Sediment Yield (05/2016 – 04/2018) 30 km 0 10 20 \wedge Monitoring Station Catchment Monitoring Station 📃 Banja Reservoir Specific Sediment Yield (t/ha yr) <= 1 1 - 5 5 - 10 10 - 20 20 - 50 Mouris et al. EGU General Assembly 2021 > 50

University of Stuttgart

WS

Soil Erosion and transport modeling

Computed and observed sediment loads

IWS

Soil Erosion and transport modeling

Computed and observed sediment loads

University of Stuttgart

 \rightarrow Recognition of snowfall and snowmelt improves model chain

Soil Erosion and transport modeling

IWS

Consideration of snow & snowmelt

- Modification of RUSLE to consider snowfall and snowmelt
- \rightarrow Distinguish between non-erosive snowfall and erosive rainfall
- → Snow becomes erosive when it melts
- \rightarrow Snow cover detection accounts for snowmelt from satellite imagery

Climate projections for southeast Albania

Temperature EC-Earth

Climate projections for southeast Albania

Precipitation EC-Earth

22

Climate projections for southeast Albania

Intense storm events per year EC-Earth RCP 8.5

Univ

Modeling results for southeast Albania

Snow storage EC-Earth RCP 8.5

University of St

Modeling results for southeast Albania

Seasonal changes – RCP 8.5

University of St

University of St

Take-home messages

- Significant seasonal and regional differences
 → detailed analysis of catchment is necessary
- Less snowfall in winter leads to higher SSY in winter and lower SSY in spring
- SSY is sensitive to both climate models and emission scenarios
 - \rightarrow recommended to analyze various input data sets
 - \rightarrow results should be ranges rather than exact values
- Approach is transferable to other case studies

Take-home messages What can be expected for France?

- Decrease of annual precipitation, especially in Southern France (up to 20%)
 - Retreat of glaciers and snow cover
 - Increase of precipitation in winter (10%)
 - Increase of rainfall intensity
 - Similar effects are expected; even a greater impact on glacial systems and snowfall than in Albania

SSY

- → Higher sediment concentrations
- \rightarrow Annual: Needs further analysis
- → Seasonal: Increase in winter and decrease in spring and summer

Outlook

Long-term reservoir sedimentation modelling

IWS

University of Stuttgart

Institute for Modelling Hydraulic and Environmental Systems

Thank you

Prof. Dr.-Ing. Silke Wieprecht

E-Mail wieprecht@iws.uni-stuttgart.de Phone +49 (0) 711 685-64461 Fax +49 (0) 711 685-64746

University of Stuttgart Institute for Modelling Hydraulic and Environmental Systems Pfaffenwaldring 61 70569 Stuttgart Germany