

Thème B : Critères de conception et de justification des fondations : modélisations et calculs

Génération de pression interstitielle dans les barrages en remblai : retour d'expérience et méthodes d'analyses

L. BOUTONNIER - EGIS D. MAHMUTOVIC - EGIS J-J. FRY - EDF

Colloque CFBR – Fondations des Barrages 8 et 9 avril 2015 – Chambéry

SOMMAIRE

1.Détermination des coefficients Ru et B

Mesures en laboratoire Méthodes de calcul traditionnelles

2.Nouvelle approche du calcul de la génération de pression en construction

Description du modèle

3.Application au calcul de la génération de pression interstitielle au sein des couches de fondation du barrage de Mirgenbach

Description du barrage, de sa fondation et du dispositif d'instrumentation en place Paramètres du modèle Application du modèle

4. Conclusions et perspectives

Mesure des coefficients A et B en labo

1.Détermination des coefficients B et A en laboratoire:

$$\Delta u = B[\Delta \sigma_3 + A \Delta (\sigma_1 - \sigma_3)]$$

Précis mais

Long et couteux Exemple : Mirgenbach

Mesure du coefficients Ru en labo

2. Avec un oedomètre classique

courbe de tassement en fonction du temps

$$R_{u} = \frac{u}{\gamma h}$$

$$R_{u} = \frac{\Delta u}{\Delta \sigma_{v}} = \frac{D_{100} - D_{1}}{D_{100} - D_{0}} = \frac{E\Delta u}{E\Delta \sigma_{v}}$$

3. En comparant un oedomètre classique à un oedomètre non drainé Application du principe de Terzaghi: à indice des vides constant: $\sigma = \sigma' + u$

Méthodes traditionnelles de calcul des coefficients Ru et B

Rappel des méthodes existantes

• Méthode USBR (dite de Hilf)

$$R_{u} = \frac{1}{1 + \frac{(1 - S_{r0} + h.S_{r0}).n_{0}}{(P_{atm} + \Delta u_{air}).m_{v}}}$$

• Méthode de Bishop

$$R_u = \frac{B(K_0 + A(1 - K_0))}{1 - B(1 - A)(1 - K_0)}$$

• Méthode de Skempton

$$B = \frac{1}{1 + n\frac{C_v}{C_s}}$$

La variation de volume est due à la variation de volume d'air La pression d'eau est égale à la pression d'air Seulement sur chemin oedométrique

Nécessite un nombre élevé d'essais triaxiaux pour déterminer A et B + définition K₀ (NC ou OC)

Introduire en plus la variation de la compressibilité du fluide interstitiel

Nouveau modèle de calcul

- Nouvelle méthode proposée (Boutonnier 2007, 2010)
 - Décomposition du sol en 4 domaines de saturation

Transposition possible sur les essais laboratoires et les ouvrages en terre

Nouveau modèle de calcul

- Nouvelle méthode proposée (Boutonnier 2007, 2010)
 - Une relation degré de saturation en fonction de uw pour chaque domaine de saturation

Nouveau modèle de calcul

- Nouvelle méthode proposée (Boutonnier 2007, 2010)
 - Prévision du coefficient Bt à l'aide du coefficient de compressibilité du fluide dans les domaines quasi-saturés

$$Bt = \frac{1}{1 + n. E_{oedo}. c_f}$$

$$c_f = \frac{1}{S_r} \cdot \frac{dS_r}{du_w} + c_w$$

$$B = \frac{\Delta u_w}{\Delta \sigma_z} = \frac{u_{w_fin} - u_{w_ini}}{\sigma_{z_fin} - \sigma_{z_ini}} = \frac{\int_{\sigma_{z_ini}}^{\sigma_{z_fin}} B_t d\sigma_z}{\sigma_{z_fin} - \sigma_{z_ini}}$$

$$R_{u} = \frac{u_{w}}{\sigma_{z}} = \frac{u_{w_ini} + B(\sigma_{z_fin} - \sigma_{z_ini})}{\sigma_{z_fin}}$$

Description du barrage

- Barrage construit au début des années 80
- Barrage homogène en argile (H=22m 1982)
- Présence d'un filtre cheminée et d'un tapis drainant

- Description de la géologie du site et des fondations du barrage
 - Barrage homogène en argile (H=22m 1982)
 - Couverture d'argile et de limon d'altération (10⁻⁹ 10⁻¹⁰ m/s)
 - Couche de marne décomprimée, fissurée et altérée sur 5 à 10 m d'épaisseur très perméable (10⁻⁵ m/s)
 - Substratum en marne grise étanche sur plus de 30 m d'épaisseur

Axe du barrage

2 CPI installées en couche de fondation et exploitables pour notre analyse

Profil B étudié

Paramètres du modèle

• Paramètres mécaniques des différentes couches de fondation

Couche	Υ_{d} [kN/m ³]	Υ _s [kN/m ³]	Υ_{h} [kN/m ³]	Υ _{sat} [kN/m ³]	W _{sat} [%]	IP	e	C _u [kPa]	σ' _p [kPa]	C _c	C _s
Limons argileux	16,2	27	20,3	20,3	25%	20	0,67	40	(*)	0,136	0,005
Argile altération	16,6	27,4	20,4	20,5	24%	29	0,65	120	(*)	0,155	0,06
Marnes altérées	18,6	26,5	21,5	21,8	16%	-	0,42	-	-	(**)	(**)
Marnes compactes	20,3	26,5	22,5	22,8	12%	-	0,31	-	-	-	-

Sol	Limon argileux	Argile d'altération
$\sigma'_{n} = Cu/0,35$	114 kPa	343 kPa

 Paramètres retenus pour le quasi-saturé à partir d'une base de données sur ce type de sol

Paramètre	$\mathbf{S}_{\mathbf{re}}$	rbm [µm]	alpha	
moyenne	0.96	2	5,00E-05	
Minimum	0.91	1	1,80E-05	
Maximum	0.99	5	9,00E-05	
Nombre d'essais oedométriques	18	18	20	

- Application du modèle à la couche de limon
 - Calcul du coefficient Ru, de la pression interstitielle et du module oedomètrique au sein de la couche de limon au cours de la montée du barrage
 Limite NC/OC

• Aucune mesure expérimentale au sein de cette couche

Application du modèle à la couche d'argile

 Calcul du coefficient Ru, de la pression interstitielle et du module oedomètrique au sein de la couche d'argile au cours de la montée du barrage

• Aucune mesure expérimentale au sein de cette couche

Application du modèle à la couche de Marne altérée

Conclusions et perspectives

Conclusions

- Des mesures simples de pressions interstitielles avec l'oedomètre
- Développement d'un modèle de prise en compte de l'air complet
- Premiers résultats prometteurs de l'application à un cas réel : l'estimation des pressions interstitielles au sein des couches de fondation du barrage de Mirgenbach

Perspectives

• Application du modèle à d'autres exemples de barrages en terre (ou autres types d'ouvrages)

MERCI

